SYNTHESIS, IR AND ¹H-NMR SPECTRA OF N,N,N',N'-TETRAALKYL-1,6-HEXANEDIAMINE DIOXIDES

Ferdinand DevíNSKY, Ivan LACKO and Ľudovít KRASNEC Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Comenius University, 880 34 Bratislava

Received March 24th, 1978

The report describes preparation of N,N'-dimethyl-1,6-hexanediamine, N,N'-bis(alkylmethyl)-1,6-hexanediamines, N-alkyl-N,N'-dimethyl-1,6-hexanediamines, N,N'-bis(alkylmethyl)-1,6-hexanediamine dioxides, N-alkyl-N,N',N'-trimethyl-1,6-hexanediamines and N-alkyl-N,N',N'-trimethyl-1,6-hexanediamine dioxides. In the case of the dioxides IR and ¹H-NMR spectra are given. In all the cases the alkyl chain is linear and contains 4 to 16 carbon atoms.

Non-aromatic amine oxides containing at least one C_{10} or longer alkyl chain show marked surface active properties, which is utilized in many fields¹⁻⁶. Furthermore, they also exhibit marked antimicrobial activity⁷, their toxicity being substantially lower than that of analogous organic amonium salts^{8,9}. The investigated substances have another advantage in being fully biodegradable and compatible with anionactive, cationactive and amphoteric detergents.

On the basis of our previous studies¹⁰ we have now followed the synthesis of amine oxides containing two N—O groups, since similar 1,6-hexanediamonium derivatives showed markedly higher antimicrobial activity than the monoamonium salts.

Synthesis of these substances started from 1,6-hexanediamine which was transformed into N,N'-dimethyl-1,6-hexanediamine by a procedure giving higher yields (by 30 to 70 per cent) than other preparations of this compound¹¹⁻¹³. Reaction of N,N'-dimethyl-1,6-hexanediamine with the corresponding 1-bromoalkane gives N,N'-bis(alkylmethyl)-1,6-hexanediamines (Table I, I - IX) and N-alkyl-N,N'-dimethyl-1,6-hexanediamines (Table I, I - IX) and N-alkyl-N,N'-dimethyl-1,6-hexanediamines (Table I, X - XVII) which can be separated by fractionation. N-Alkyl-N,N'-dimethyl-1,6-hexanediamines were methylated by modified Leuckart reductive alkylation¹⁴ (Table I, XVIII - XXV). The final amine oxides (Table II) were prepared by action of 30% aqueous hydrogen peroxide on the respective tertiary amines¹⁵. They are well soluble in polar solvents, being little soluble or insoluble in non-polar ones.

Interpretation of the IR spectra followed the procedure by Hummel¹⁶ which assignes the most intensive of the three bands in spectrum of dodecyldimethylamine N-oxide to stretching vibration v(NO) in the region 1000 to 960 cm⁻¹. Similarly, Nakanishi¹⁷ gives the stretching vibration v(NO) for aliphatic amine oxides in the TABLE I Diamines

Compound	Formula	B.p., °C/kPa	Calc	ulated/F	Yield, %		
R	(m.wt.)	$n_{\rm D}^{20}$	% C	% н	% N	R_F	
<i>I</i>	C ₁₆ H ₃₆ N ₂	110—113/0·01	74·64	14·09	10·88	44	
Butyl	(256·5)	1·4451	74·75	14·00	11·03	0·72	
<i>II</i>	C ₂₀ H ₄₄ N ₂	165—167/0·05	76∙85	14·19	8∙96	43	
Hexyl	(312·6)	1·4492	76∙90	13·92	9∙03	0·69	
III	C ₂₄ H ₅₂ N ₂	214/0·01	78∙16	14·21	7∙60	49	
Octyl	(368·7)	1·4532	78∙22	14·56	7∙79	0∙66	
<i>IV</i>	C ₂₆ H ₅₆ N ₂	204-206/0·04	78∙72	14·23	7∙06	43	
Nonyl	(396·8)	1·4548	79∙02	14·41	7∙00	0·64	
V	C ₂₈ H ₆₀ N ₂	237-239/0·13	79∙17	14·24	6∙59	42	
Decyl	(424·8)	1·4560	78∙85	14·36	6∙50	0·61	
<i>VI</i>	C ₃₀ H ₆₄ N ₂	235/0·07	79∙58	14·25	6·19	43	
Undecyl	(452·8)	1·4568	79∙80	14·19	6·30	0·45	
<i>VII</i>	C ₃₂ H ₆₈ N ₂	241/0·05	79∙92	14·25	5∙83	44	
Dodecyl	(480·9)	1·4591	79∙74	14·16	5∙87	0·41	
<i>VIII</i>	C ₃₄ H ₇₂ N ₂	256—257/0·05	80∙24	14·26	5∙50	46	
Tridecyl	(509·0)	1·4594	79∙99	14·06	5∙70	0·30	
IX	C ₃₆ H ₇₆ N ₂	263-264/0·05	80∙52	14·26	5∙22	48	
Tetradecyl	(537·0)	1·4601	80∙57	14·14	5∙09	0·18	
X	C ₁₇ H ₃₈ N ₂	142—145/0·007	75∙46	14·16	10∙35	55	
Nonyi	(270·5)	1·4513	75∙53	14·19	10∙54	0.65	
XI	C ₁₈ H ₄₀ N ₂	153—156/0·007	75∙99	14·17	9∙85	54	
Decyl	(284·5)	1·4521	75∙74	14·01	9∙64	0·62	
<i>XII</i>	C ₁₉ H ₄₂ N ₂	157/0·004	76∙43	14·18	9∙38	56	
Undecyl	(298·6)	1·4536	76∙59	14·11	9∙40	0·59	
XIII	C ₂₀ H ₄₄ N ₂	178—180/0·04	76∙84	14·19	8∙96	55	
Dodecyl	(312·6)	1·4545	76∙77	14·30	9∙08	0·54	
Tridecyl	C ₂₁ H ₄₆ N ₂ (326·6)	179—180/0·04 1·4550	77∙22 77∙19	14·20 14·21	8∙58 8∙41	53 0·50	
XV	C ₂₂ H ₄₈ N ₂	189—190/0·04	77∙57	14·20	8·22	51	
Tetradecyl	(340·7)	1·4566	77∙70	14·28	8·31	0·45	
XVI	C ₂₃ H ₅₀ N ₂	183/0·02	77·88	14·21	7∙90	52	
Pentadecyl	(354·7)	1·4572	77·57	14·09	7∙91	0·42	
XVII	C ₂₄ H ₅₂ N ₂	204-206/0·02	78∙18	14·21	7∙60	54	
Hexadecyl	(368·7)	1·4610	77∙98	14·30	7∙84	0·38	

774

(Continued)

Compound	Formula	B.p., °C/kPa	Calculated/Found		Yield, %	
R	(m.wt.)	n _D ²⁰	% C	% Н	% N	R _F
XVIII	C ₁₈ H ₄₀ N ₂	148/0·03	75∙99	14·17	9·85	76
Nonyl	(284·5)	1·4483	76∙03	13·96	9·99	0∙59
XIX	C ₁₉ H ₄₂ N ₂	157/0·03	76·43	14·18	9∙38	84
Decyl	(298·6)	1·4499	76·21	14·06	9∙29	0∙55
XX	C ₂₀ H ₄₄ N ₂	175/0·23	76∙84	14·19	8·96	71
Undecyl	(312·6)	1·4507	76∙67	14·01	9·12	0∙53
XXI	C ₂₁ H ₄₆ N ₂	178—180/0·06	77∙22	14·20	8·58	75
Dodecyl	(326·6)	1·4522	77∙50	14·14	8·30	0∙50
XXII	C ₂₂ H ₄₈ N ₂	177—179/0·01	77·57	14·20	8·22	81
Tridecyl	(340·7)	1·4529	77·40	14·47	8·15	0·47
XXIII	C ₂₃ H ₅₀ N ₂	188—190/0·12	77·88	14·21	7∙90	76
Tetradecyl	(354·7)	1·4536	77·73	14·12	7∙98	0·41
XXIV	C ₂₄ H ₅₂ N ₂	196/0·02	78∙18	14·21	7∙60	78
Pentadecyl	(368·7)	1·4551	78∙05	14·37	7∙54	0·35
XXV	C ₂₅ H ₅₄ N ₂	202 — 204/0·03	78∙45	14·22	7∙32	88
Hexadecyl	(382·8)	1·4563	78∙50	14·48	7∙50	0·26

region 970 to 950 cm⁻¹. However, from ref.¹⁵ it can be presumed that the frequency lowering of the stretching vibration v(NO) of the prepared amine oxides (951 to 938 cm⁻¹) is due to the presence of crystal water. Table III gives also the values of mixed rocking vibrations $\varrho(CH_2)$ which are characteristic for aliphatic chains having 4 or more carbon atoms^{18,19}.

In evaluation of the ¹H-NMR spectra we followed refs^{15,21}. By this method we investigated the effect of N-oxidation of the tertiary nitrogen atom on chemical shifts of methyl and methylene protons. It was found that the prepared N-oxides show, in all the cases, a marked shift of both methyl and α -methylene proton signals towards lower values of magnetic field due to increased electronegativity of nitrogen. The shift observed in the both cases was 77·6 Hz. Furthermore, the spectra of amine oxides (in contrast to those of tert-amines) showed further signals due to β -methylene protons. In case of the compounds XXII - XXIIV (Table IV) the δ values are shifted to higher field by 10·4 Hz (for α -CH₂ protons) and 11·2 Hz (γ -CH₂), which is probably connected with steric arrangement of the alkyl chain¹⁵. The analogous shifts of the compounds XXXV - XLII (Table V) were not so marked.

TABLE II Diamine Dioxides

Compound	Formula	M.p., °C	Calcu	lated/Fo	ound	Yield, %	
R	(m.wt.)		% C	% н	% N	R _F	
XXVI Butyl	$C_{16}H_{36}N_2O_2^{\ a}$ (288.5)	99-102	66·61 59·32	12·58 12·52	9·71 8·53	95 0·63	
XXVII Hexyl	C ₂₀ H ₄₄ N ₂ O ₂ ^a (344·6)	124-126	69·71 63·19	12·87 12·61	8·13 7·58	98 0∙66	
XXVIII Oktyl	C ₂₄ H ₅₂ N ₂ O ₂ ^a (400·8)	127-128	71·93 66·32	13∙08 12∙90	6·99 6·69	96 0∙68	
XXIX Nonyl	C ₂₆ H ₅₆ N ₂ O ₂ ^a (428·8)	134-135	72·83 67·08	13·16 12·97	6∙53 6∙13	95 0·69	
XXX Decyl	C ₂₈ H ₆₀ N ₂ O ₂ ^a (456·9)	123.5	73∙61 68∙00	13·24 13·14	6·13 5·42	97 0·70	
XXXI Undecyl	C ₃₀ H ₆₄ N ₂ O ₂ ^a (484·9)	127-128	74·30 69·27	13·30 13·20	5∙78 5∙40	98 0·71	
XXXII Dodecyl	C ₃₂ H ₆₈ N ₂ O ₂ ^a (513·0)	129-131	74∙94 70∙09	13·36 13·18	5∙46 5∙00	98 0·72	
XXXIII Tridecyl	C ₃₄ H ₇₂ N ₂ O ₂ ^a (541·0)	127-130	75∙49 70∙49	13·42 12·99	5·18 4·85	97 0·74	
XXXIV Tetradecyl	C ₃₆ H ₇₆ N ₂ O ₂ ^a (569·1)	131-131-5	73·87 71·41	13·46 13·28	4∙92 4∙65	98 0·77	
XXXV Nonyl	C ₁₈ H ₄₀ N ₂ O ₂ ^b (316·5)	148-149-5	68·30 64·51	12·74 12·47	8·85 8·37	95 0·73	. م
XXXVI Decyl	$C_{19}H_{42}N_2O_2^{b}$ (330.6)	147.5-148	69∙03 66∙00	12·81 12·83	8∙47 8∙06	93 0·70	
XXXVII Undecyl	$C_{20}H_{44}N_2O_2^{\ b}$ (344.6)	154	69·71 66·42	12·87 12·81	8·13 7·51	95 0∙65	
XXXVIII Dodecyl	$C_{21}H_{46}N_2O_2^{b}$ (358.6)	143	70·33 66·87	12·93 12·80	7∙81 7∙34	97 0∙61	
XXXIX Tridecyl	$C_{22}H_{48}N_2O_2^{b}$ (372.7)	156	70·91 67·52	12·98 12·85	7·52 7·15	99 0·56	
XL Tetradecyl	$C_{23}H_{50}N_2O_2^{b}$ (386.7)	141	71·44 68·43	13·04 12·70	7∙24 6∙76	97 0·50	
XLI Pentadecyl	$C_{24}H_{52}N_2O_2^{b}$ (400.7)	152-152	71-93 69-03	13·08 12·86	6∙99 6∙60	98 0·43	
XLII Hexadecyl	$C_{25}H_{54}N_2O_2^{b}$ (414.8)	137-138	72·40 69·28	13·14 13·26	6·75 6·34	96 0·35	

" Dihydrate; ^b monohydrate.

Collection Czechoslov. Chem. Commun. [Vol. 44] [1979]

EXPERIMENTAL

The ¹H-NMR spectra were measured with a Tesla BS 487A apparatus at 80 MHz in 10% solutions in CDCl₃ at 30°C using tetramethylsilane as internal standard. Accuracy of the frequency readings was ± 0.5 Hz. Content of crystal water in the amine oxides was determined by thermogravimetry using a Derivatograph MOM 102 (Mom, Budapest). Purity of the prepared amines and amine oxides was checked by elemental analysis and TLC using Silufol and acetone-1M-HCl (1:1) and detection with Dragendorf reagent in the Munier modification²⁰. All the amine oxides were dried (before elemental analyses and the measurements) in a vacuum dessiccator over P_4O_{10} at 13 Pa for 48 h. The melting points were determined with a Boetius apparatus. All given temperature data are not corrected.

Table III

IR Spectral Characteristics of the Prepared Diamine Dioxides (wave numbers in cm⁻¹)

The IR spectra were measured with a Perkin-Elmer 377 apparatus (XXVI-XXXIV) in NaCl cells or with a UR-20 spectrometer (Zeiss, Jena) (XXXV-XLII) in KBr cell in parafine oil suspension. The spectrometers were calibrated with a polystyrene foil, the accuracy of the wave number readings being ± 1 cm⁻¹.

Compound	v(N	10 ^a)	$\varrho(\mathrm{CH}_2)$	Compound	v(N	iO) ^a	$\varrho(\mathrm{CH}_2)^b$
XXVI	938	920 965	727	XXXV	945	923 969	729 742
XXVII	939	920 968	723	XXXVI	945	922 968	726 742
XXVIII	948	926 967	722	XXXVII	946	921 970	728 740
XXIX	950	930 968	722	XXXVIII	945	920 969	725 741
XXX	948	930 975	721	XXXIX	946	922 972	725 742
XXXI	948	930 974	721	XL	946	924 971	725 743
XXXII	948	930 975	721	XLI	946	920 970	729 742
XXXIII	948	929 975	721	XLII	946	920 970	728 742
XXXIV	951	930 975	721				

^a Triplet of sharp peaks, the central peak having the maximum intensity; ^b doublet of sharp peaks, the first one being the more intensive.

N,N'-Dimethyl-1,6-hexanediamine

Benzaldehyde (1·2 mol) was added to solution of 0·5 mol 1,6-hexanediamine in 200 ml benzene at room temperature. The mixture was refluxed 30 min, whereupon benzene and the water formed in the reaction were distilled off in vacuum. The evaporation residue was treated with 1·2 mol dimethyl sulphate in 400 ml benzene at room temperature. After the exothermic reaction had ceased, the mixture was refluxed 1 h, the non-reacted dimethyl sulphate and benzene were vacuum distilled off, and the residue was treated with 400 ml water and 1 mol 98% H₂SO₄. After 1 h boiling benzaldehyde was steam distilled. The residue was cooled, and solid NAOH was added with stirring and cooling until separation of the amine. The amine was extracted with ether, the extracts were dried with solid NAOH whereupon the solvent was distilled off under atmospheric pressure. The product was distilled in vacuum. B.p. 92°C/1·60 kPa; n_{20}^{p} 1·4469; R_F 0·57; yield 86%. IR spectrum: y(NH) 3280 cm⁻¹; δ (NH) broad intensive band with the maximum at 740 cm⁻¹; ν (N—CH₂) 2690 cm⁻¹; ν (C—N) doublet 1125 and 1150 cm⁻¹. ¹H-NMR spectrum: chemical shifts δ in ppm: CH₃ 2·29 d; NH 1·33 s; N—CH₂— 2·44 m; (CH₂)₄ 1·22 m. ³J_{HC}-NH = 0·92 Hz.

N,N'-Bis(alkylmethyl)-1,6-hexanediamines and N-Alkyl-N,N'-dimethyl-1,6-hexanediamines (Table I, *I-IX* and *X-XVII*, resp.)

N,N'-Dimethyl-1,6-hexanediamine (0·3 mol) was dissolved in 300 ml benzene and heated to boiling whereupon 0·1 mol 1-bromoalkane was added within 1 h. After 6 h refluxing and cooling the precipitated N,N'-dimethyl-1,6-hexanediamonium dibromide was filtered off and washed with

TABLE IV

¹H-NMR Spectral Characteristics of N,N'-Bis(alkylmethyl)-1,6-hexanediamine Dioxides (chemical shift δ given in ppm)

	ĊH ₃				ĊH ₃	
	b				Ь	
Compound	n	а	b	α	β	γ
Compound		t	S	t	m*	m
XXVI	1	0.86	2.98	3.11	1.75	1.29
XXVII	3	0.79	2.96	3.09	1.76	1.23
XXVIII	5	0.76	2.95	3.07	1.75	1.19
XXIX	6	0.77	2.96	3.05	1.75	1.18
XXX	7	0.76	2.99	3.04	1.75	1.16
XXXI	8	0.77	2.99	3.04	1.76	1.16
XXXII	9	0.77	2.98	3.01	1.73	1.15
XXXIII	10	0.77	2.99	3.00	1.71	1.15
XXXIV	11	0.76	2.96	2.98	1.73	1.15

benzene. The benzene solution was treated with 0.6 mol 37% HCl and, after shaking, the benzene layer was separated and extracted with 100 ml water. Solid NaOH was added to the combined aqueous extracts until separation of amine layer which was extracted with ether. The ether extracts were dried with Na₂SO₄, the solvent was distilled off, and the product was fractionated in vacuum. The products are oils.

N-Alkyl-N,N',N'-trimethyl-1,6-hexanediamines (Table I, XVIII-XXV)

The compounds were prepared according to ref.¹⁴, the only difference being in that methylation mixture consisting of 0.44 mol 36% formaldehyde and 0.74 mol 98% formic acid was added to 0.1 mol secondary amine heated at 70° C within 1 h.

N,N'-Bis(alkylmethyl)-1,6-hexanediamine Dioxides and N-Alkyl-N,N',N'-trimethyl-1,6-hexane diamine Dioxides (Table II, XXVI-XXXIV and XXXV-XLII, respectively)

The compounds were prepared according to ref.¹⁵ and crystallized from acetone.

TABLE V

¹H-NMR Spectral Characteristics of N-Alkyl-N,N',N'-trimethyl-1,6-hexanediamine Dioxides (chemical shift δ given in ppm)

CH ₃							
a a				Ь			с
compound ^a		a	b	с	α	β	γ
compound	"	S	S	t	t	m*	m
XXXV	6	3.05	2.95	0.75	3.15	1.84	1.16
XXXVI	7	3.07	2.95	0.76	3.15	1.81	1.15
XXXVII	8	3.08	2.95	0.76	3.14	1.79	1.15
XXXVIII	9	3.09	2.95	0.76	3.15	1.78	1.15
XXXIX	10	3.08	2.95	0.76	3.15	1.78	1.15
XL	11	3.09	2.96	0.76	3.16	1.75	1.15
XLI	12	3.10	2.95	0.76	3.16	1.76	1.14
XLII	13	3.10	2.96	0.75	3.16	1.75	1.14

^a The coupling constant ${}^{3}J_{\text{HC-CH}}$ in CH₃—CH₂— was within 7·1 to 7·3 Hz in all the cases. The coupling constant ${}^{3}J_{\text{HC-CH}}$ in —CH₂—CH₂—N \rightarrow O was within 7·5 to 7·7 Hz in all the cases. t triplet; s singlet; m multiplet; m^{*} multiplet, the maximum of the broad band being given.

Collection Czechoslov. Chem. Commun. [Vol. 44] [1979]

REFERENCES

- 1. Wakeman R. I., Dudzinski Z. W. (Milmaster Onyx Co.): U.S. 3 270 060.
- 2. Lincoln P. A.: J. Soc. Cosmet. Chem. 8, 222 (1957).
- 3. Pilcher W., Eaton S. L. (Procter & Gable Co): U.S. 2 999 068.
- 4. Langman W., Pantke H., Hendricks U. W., Quadvlieg M. (Farbenfabriken Bayer A. G.): Brit. 1 125 259.
- 5. Matson T. P.: J. Amer. Oil Chem. Soc. 40, 640 (1964).
- 6. Girard C. A., Clarke F. R. (Int. Business Machines Co.): U.S. 3 348 947.
- 7. Mlynarčík D., Čupková V., Devínsky F., Lacko I.: Folia Microbiol. (Prague), in press.
- 8. Vrbovský L.: Proc. Eur. Soc. Study Drug Tox. 15, 331 (1974).
- 9. Jerchel D., Jung G.: Chem. Ber. 85, 1130 (1952).
- 10. Lacko I., Devínsky F., Mlynarčík D., Krasnec L.: Acta Fac. Pharm. 30, 109 (1977).
- 11. Sakurai Y., Maruyama K.: Chem. Pharm. Bull. 6, 169 (1958).
- 12. Klebanskii A. L., Vilesova M. S.: Zh. Obshsh. Khim. 28, 1528 (1958).
- 13. von Braun S.: Chem. Ber. 43, 2854 (1910).
- 14. Clarke H. T., Gillespie H. B., Weisshaus S. Z.: J. Amer. Chem. Soc. 55, 4571 (1933).
- 15. Devínsky F., Lacko I., Nagy A., Krasnec L.: Chem. Zvesti 32, 106 (1978).
- 16. Hummel D.: Analyse der Tenside, Textband 103. Tafelband 198. Hauser, Munich 1962.
- Nakanishi K.: Infrared Absorption Spectroscopy, Russian translation, p. 62. Mir, Moscow 1965.
- Horák M., Papoušek D.: Infračervená spektra a struktura molekul, p. 161. Academia, Prague 1976.
- 19. Günzler H., Böck H.: IR-Spektroskopie, p. 159. Verlag Chemie, Weinheim 1975.
- Šaršúnová M., Schwarz V., Michalec Č.: Chromatografia na tenkých vrstvách vo farmácii a biochémii, p. 263. Obzor, Bratislava 1968.
- 21. Cook M. J., Katritzky A. R., Moreno Mañas M.: J. Chem. Soc. (B) 1971, 1330.

Translated by J. Panchartek.

Collection Czechoslov. Chem. Commun. [Vol. 44] [1979]